Le poids des habitudes dans les addictions

Les lundis de la psychiatrie Florent Wyckmans 2^{ème} année de thèse sous la supervision du Professeur Noël

Laboratoire de Psychologie Médicale et d'Addictologie

Plan

Decision-making

- Habit-like decisions
- Goal-directed decisions

Evaluation

- Outcome devaluation paradigm
- Two-step Markov task

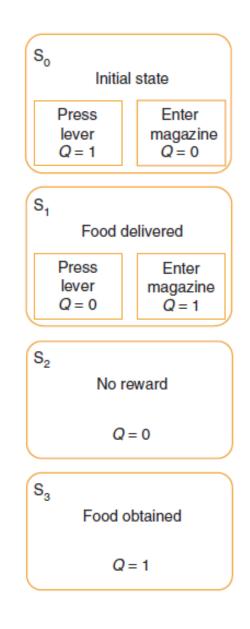
Decisional balance and dimensional psychiatry

Habit and addiction

My thesis project and first results

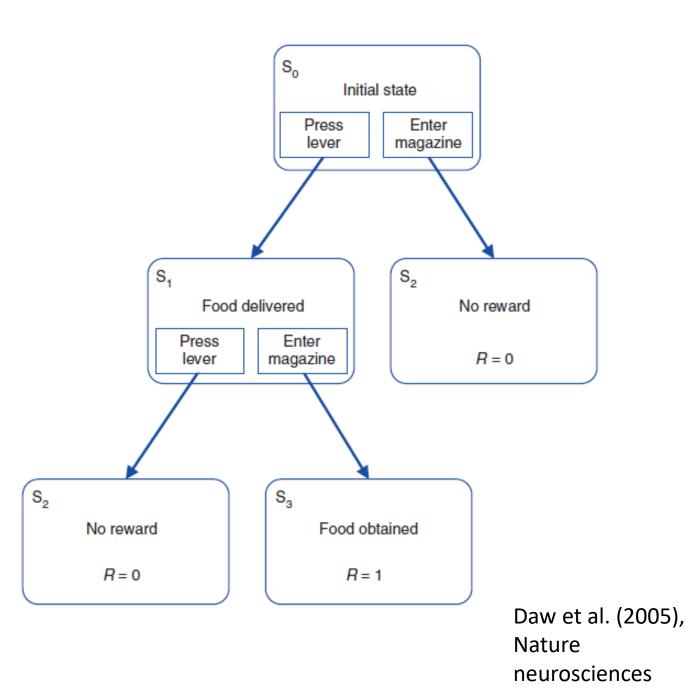
Decisionmaking

Selection of an action among different alternatives to optimize the behavior.


Predictions about action consequences.

Two parallel decision-making processes : habitual and goaldirected.

Habitual system


- Association between state and action, stimulus and response
- No link between actions and consequences
- Retrospective system
- Inflexible but cost-efficient
- Mainly depends on striatal regions (memory)
- -> Model-free or system I

Daw et al. (2005), Nature neurosciences

Goal-oriented system

- Mental map considering the initial state, the wished state and each choice consequences
- Prospective system
- Flexible but cognitively costly
- Mainly depends on the ventromedial prefrontal cortex (executive functioning)
- -> Model-based or system II

Two decisionmaking processes working in parallel

Dickinson, A. (1985) Kahneman, D. (2011) Daw, N. et al. (2005; 2011) Dolan & Dayan (2013)

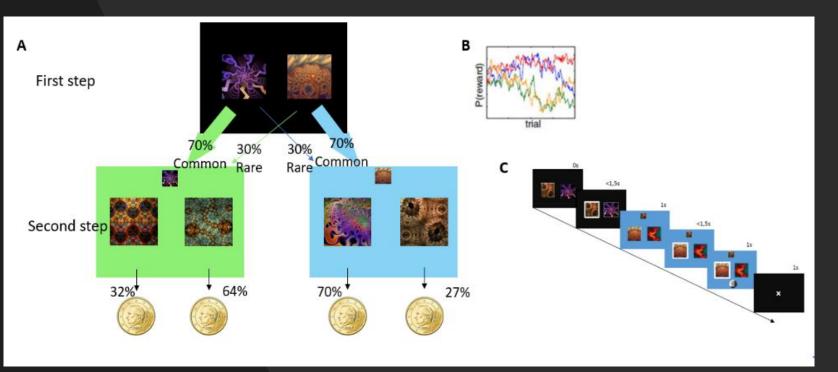
Habitual decisions

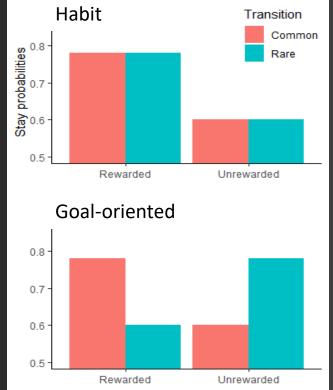
- "Automatic" behavior
- Inflexible
- Cognitively cost-effective
- Retrospective

Goal-oriented decisions

- "Deliberate" behavior
- Flexible
- Cognitively demanding
- Prospective

Outcome devaluation paradigm


- Reward after a binary choice
- ...


cocaine, ...

Adams & Dickinson (1981), Quarterly Journal of Experimental Psychology Zapata et al. (2010), The Journal of Neurosciences Hogarth (2012), JEP

Two-step Markov task

- Continuous evaluation
- Discrimination between too much habit and not enough goal-oriented behavior

Daw et al. (2011), Neuron Otto et al. (2013), PNAS

Decisional balance and dimensional psychiatry

Decreased goal-oriented decisions

Stress

Individuals with high impulsivity Patients suffering from OCD, eating disorders Compulsive behavior and intrusive thoughts Patients suffering from addiction?

Enhanced goal-oriented decisions

Individuals with high cognitive capabilities

Habit and addiction

Addiction : recurrent behavior, hardly controllable and resisting to their negative consequences.

Decision making : Selection of an action among different alternatives to optimize the behavior.

Counterintuitive ascertainment : the behavior persists despite the loss of his rewarding nature.

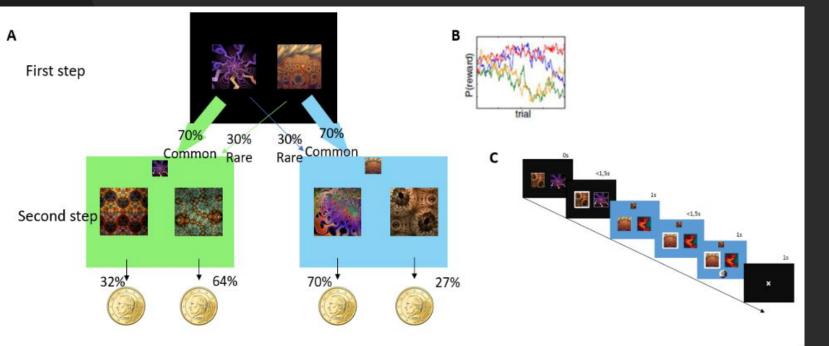
Probable imbalance between pastoriented habit and goal-oriented behavior.

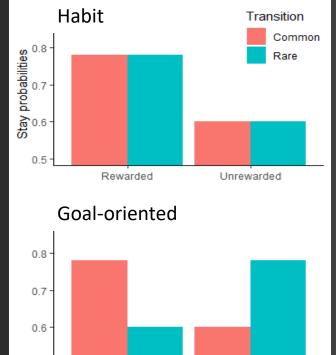
In favor of a decisional imbalance

Outcome devaluation paradigm

	Sjoerds et al. (2013)	Alcohol-dependent patients				
	Ersche et al. (2016)	Cocaine-dependent patients				
	Markov Task					
	Gillan et al. (2016)	Alcohol-dependent subjects				
	Sebold et al. (2014)	Alcohol-dependent patients				
	Voon et al. (2015)	Methamphetamine users				
	Voon et al. (2015)	Binge eaters				
and	Doñamayor et al. (2018)	Binge drinkers				
ction	In disfavor of a decisional imbalance					
	Outcome devaluation paradigm					
	Hogarth et al. (2011, 2012a, 2012b)	Tobacco users				
	Hogarth (2018)	Drug addicts				
	Markov Task					
	Voon et al. (2015), Sebold et al. (2017)	Alcohol-dependent patients				
	Nebe et al. (2017)	Binge drinkers				
	Deserno et al. (2015)	Young social drinkers				
	Reither et al. (2016)	Children of alcoholic father				

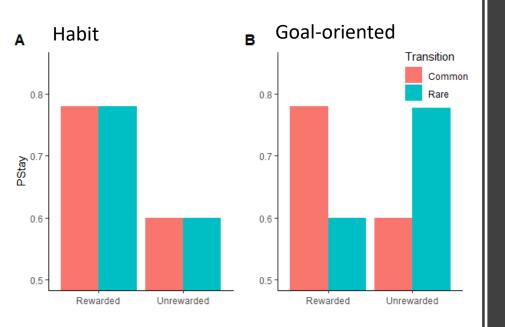
Habit and addiction


Reduced model-based decision-making in gambling disorder (accepted manuscript, scientific reports)


Florent Wyckmans, Ross Otto, Miriam Sebold, Nathaniel Daw, Antoine Bechara, Mélanie Saeremans, Charles Kornreich, Armand Chatard, Nemat Jaafari, Xavier Noël

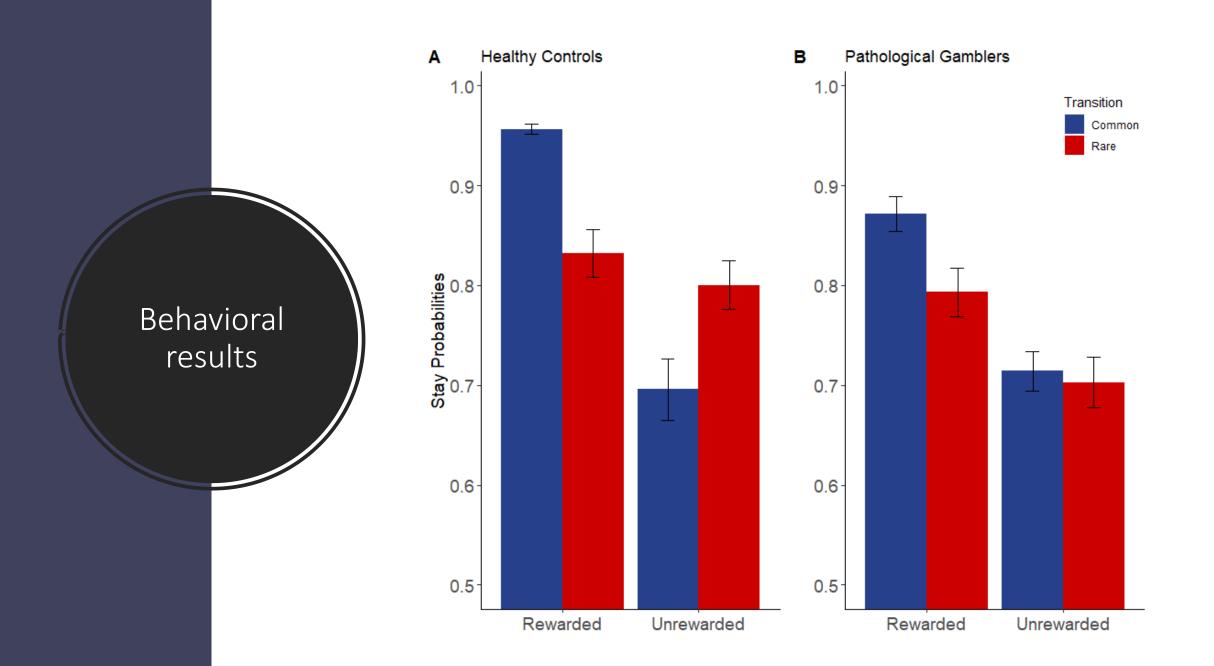
Study of the addiction without the substance's confounding effect !

Method


Unrewarded

Rewarded

0.5


45 active pathological gamblers33 control subjects

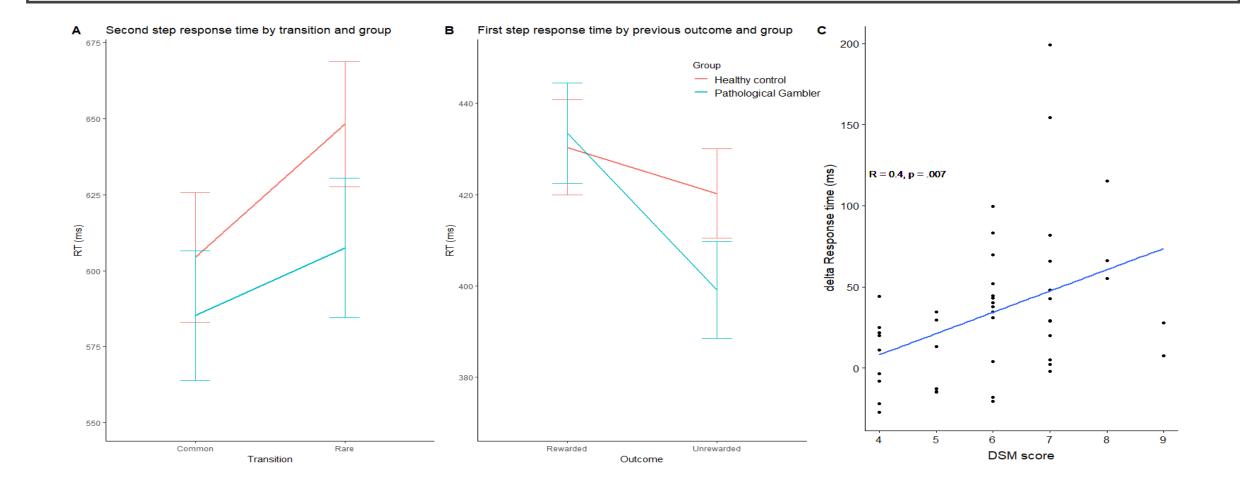
Research questions

- Does the participants repeat his first step choice ?
- What are the determinants of the first step choice? Previous reward (habit) or the interaction between the previous reward and the previous transition (goaloriented) ?
- Are goal-oriented processes weakened among pathological gamblers ?
- Does it depend on the outcome valence ?
- Does response times follows decision-making processes ?

Behavioral results

Each participant show habitual and goaldirected decisions

Habitual behavior does not seem affected by pathological gambling



Behavior is significantly less goal-directed among pathological gamblers

This diminution appears only after unrewarded trials

Response time analysis

Response time analysis

After a rewarded trial, both group's reaction times does not significantly differ

After an unrewarded trial, pathological gamblers significantly fasten their rates of play

This acceleration significantly correlates of the severity of the addiction measured by the DSM ($R^2 = 0.4$, p < .01).

In short

- Habitual behavior is not affected by gambling disorder
- Goal-directed behavior is diminished among gamblers, but only after a fail attempt
- Shorter reaction time after a loss

Are negative emotions responsible for this diminished goal-oriented system ?

Future researches and openings

PHYSIOLOGICAL STRESS AND COGNITIVE CAPACITIES IMPACT ON DECISIONAL BALANCE

STUDY OF ALCOHOL-DEPENDENT PARTICIPANTS

IMPACT OF THE INDUCED CRAVING ON DECISIONAL BALANCE

Thank you very much!

- Mixt logistic regression
- DV : Probability to maintain the first stage choice.
- IV : Group : Pathological gamblers vs healthy controls
 - Outcome : Rewarded previous trial vs non rewarded
 - Transition : Common vs Rare transition at the previous trial

	Coefficient	Estimate (SE)	z-value	p-value	Signification
	Intercept	1,67 (0,1)	16,26	<.001***	
	Group	-0,16 (0,1)	-1,54	.12	
	Outcome	0,55 (0,06)	9,05	<.001***	Habit's signature
	Transition	0,2 (0,05)	3,86	<.001***	
	Group*Outcome	-0,02 (0,06)	-0,42	.67	Interaction group*habit
	Group*Transition	0,04 (0,05)	0,7	.48	
	Outcome*Transit ion	0,32 (0,06)	5,14	<.001***	Goal-directed' signature
	Group*Outcome *Transition	-0,12 (0,06)	-2	<.05*	Interaction group*Goal- directed

Behavioral results

Unrewarded trial (Outcome = -1)									
	Estimate (std. Error)	Z value	p value						
Intercept	1.12 (0.09)	11.93	<.001***						
Group	-0.13 (0.09)	-1.41	0.16						
Transition	-0.12 (0.05)	-2.16	<.05*						
Group * Transition	0.16 (0.05)	2.95	<.01**						
Rewarded trial (Reward = 1)									
	Estimate (std. Error)	Z value	p value						
Intercept	2.22 (0.14)	16.07	<.001***						
Group	-0.18 (0.14)	-1.34	0.18						
Transition	0.51 (0.1)	5.32	<.001***						
Group * Transition	-0.09 (0.1)	-0.92	0.36						

Behavioral results

References

- Daw, N. D., Niv, Y. & Dayan, P. Uncertainty-based competition between prefrontal and dorsolateral striatal systems for behavioral control. *Nat. Neurosci.* **8**, 1704–1711 (2005).
- Daw, N. D., Gershman, S. J., Seymour, B., Dayan, P. & Dolan, R. J. Model-Based Influences on Humans' Choices and Striatal Prediction Errors. Neuron 69, 1204–1215 (2011).
- Dolan, R. J. & Dayan, P. Goals and habits in the brain. *Neuron* 80, 312–325 (2013).
- Dickinson, A. Actions and Habits: The Development of Behavioural Autonomy. *Philos. Trans. R. Soc. Lond. B. Biol. Sci.* **308**, 67–78 (1985).
- Sjoerds, Z. *et al.* Behavioral and neuroimaging evidence for overreliance on habit learning in alcohol-dependent patients. *Transl. Psychiatry* 3, e337–e337 (2013).
- Ersche, K. D. et al. Carrots and sticks fail to change behavior in cocaine addiction. Science 352, 1468–1471 (2016).
- Sebold, M. et al. Model-Based and Model-Free Decisions in Alcohol Dependence. *Neuropsychobiology* **70**, 122–131 (2014).
- Otto, A. R., Raio, C. M., Chiang, A., Phelps, E. A. & Daw, N. D. Working-memory capacity protects model-based learning from stress. *Proc. Natl. Acad. Sci. U. S. A.* **110**, 20941–20946 (2013).
- Smeets, T., van Ruitenbeek, P., Hartogsveld, B. & Quaedflieg, C. W. E. M. Stress-induced reliance on habitual behavior is moderated by cortisol reactivity. Brain Cogn. 133, 60–71 (2019).